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ABSTRACT 
In this paper we investigate the use of scene graphs as a 
general approach for implementing two-dimensional (2D) 
graphical applications, and in particular Zoomable User 
Interfaces (ZUIs). Scene graphs are typically found in 
three-dimensional (3D) graphics packages such as Sun’s 
Java3D and SGI’s OpenInventor. They have not been 
widely adopted by 2D graphical user interface toolkits.  

To explore the effectiveness of scene graph techniques, we 
have developed Jazz, a general-purpose 2D scene graph 
toolkit. Jazz is implemented in Java using Java2D, and runs 
on all platforms that support Java 2. This paper describes 
Jazz and the lessons we learned using Jazz for ZUIs. It also 
discusses how 2D scene graphs can be applied to other 
application areas. 

Keywords 
Zoomable User Interfaces (ZUIs), Animation, Graphics, 
User Interface Management Systems (UIMS), Pad++, Jazz. 

INTRODUCTION 
Today’s Graphical User Interface (GUI) toolkits contain a 
wide range of built-in user interface objects (also known as 
widgets, controls or components). These GUI toolkits are 
excellent for building hierarchical organizations of standard 
widgets such as buttons, scrollbars, and text areas.  
However,  they fall short when the developer needs to 
create application-specific widgets. Developers typically 
write these application-specific widgets by subclassing an 
existing widget and overriding methods to define new 
functionality. However, GUIs have become more 
sophisticated, and the level of functionality needed to 
implement a new GUI widget has increased. Beyond 
writing the code to draw the widget, the developer must 
also write code to handle events, drag and drop, selection, 
layout, keyboard navigation, keyboard focus highlighting, 
tool tips, context sensitive help, popup menus, accessibility, 
internationalization, animated scrolling, and so on. 
Implementing a fully functional application-specific widget 
is a daunting task. 

We believe that a significant problem with existing 2D user 
interface toolkits is that they follow a “monolithic” design 
philosophy. That is, they use a relatively small number of 
classes to provide a large amount of functionality. As a 
result, the classes tend to be complex and have large 
numbers of methods, and the functionality provided by 
each class is hard to reuse in new widgets.  

To address code reuse, toolkit developers usually place 
generally useful code in a top-level class that is inherited 
by all of the widgets in the toolkit. There are several 
drawbacks to this approach. Firstly, it leads to a very 
complex hard-to-learn top-level class.  (In Microsoft MFC, 
the top-level CWnd class has over 300 methods. The Java 
Component class has over 160 methods. Even Java Swing, 
a relatively new toolkit with a modern design, has a top 
level JComponent class with over 280 methods). Secondly, 
application developers are forced to accept the functionality 

Figure 1: Screen snapshot of the HiNote
application program, written using Jazz. 
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provided by the toolkit’s top-level class – they can not add 
their own reusable mechanisms to enhance the  
toolkit. Many researchers create their own custom toolkit 
so that they can have complete control over the capabilities 
of widgets in their application. 

For several years, we have been investigating Zoomable 
User Interfaces (ZUIs), which use zooming as a principal 
method of navigation.  ZUIs have a number of unique 
requirements, such as the need for "semantic zooming" 
where more detail is displayed as the scene is zoomed in, 
and the need for multiple views of the same scene at 
different magnifications. In practice, implementing a 
general purpose widget for supporting ZUI applications is 
very hard [7]. 

In this paper, we report on our experiences developing 
Jazz1. Jazz is a new toolkit for developing ZUI 
applications. It can also be used to build many other kinds 
of 2D widgets.  

Unlike prior GUI toolkits, Jazz is based on a “minilithic” 
design philosophy. In Jazz, functionality is delivered not 
through class inheritance but rather by composing a 
number of simple objects within a scene graph hierarchy. 
These objects are frequently non-visual (e.g. layout nodes), 
or serve to “decorate” nodes beneath them in the scene 
graph with additional appearance or functionality (e.g. 
selection nodes). Jazz therefore tackles the complexity of a 
graphical application by dividing object functionality into 
small, easily understood and reused node types. Those 
nodes can be combined to create powerful applications. 
The base ZNode class in Jazz has under 60 public methods 
(16 are related to events, 16 are related to the scenegraph 
structure, 8 are related to coordinates, and the rest are for 
other functions such as painting, saving, properties, and 
debugging.) 

We believe that minilithic scene graphs are an important 
mechanism for supporting custom 2D application widgets 
in general, and ZUIs in particular. While zooming has been 
one of our motivations for building Jazz, we think that its 
simple model will prove useful for non-zooming 
applications as well.  In particular, we believe that Jazz’s 
combination of extensibility, object orientation, 
hierarchical structure, and support for multiple 
representations will simplify the task of writing many 
application-specific 2D widgets. 

In this paper, we first describe the unique requirements of 
ZUIs that led us to create Jazz. We outline related work and 

                                                           
1 The name Jazz is not an acronym, but rather is motivated 
by the new music-related naming conventions that the Java 
Swing toolkit started.  In addition, the letter 'J' signifies the 
Java connection, and the letter 'Z' signifies the zooming 
connection. 
Jazz is open source software according to the Mozzilla 
Public License, and is available at: 
http://www.cs.umd.edu/hcil/jazz 

discuss the architecture of Jazz. We show how Jazz 
supports adding functionality by composition, and describe 
some applications we have built using Jazz. We conclude 
by describing some of our experiences building the Jazz 
toolkit, and outline future work. 

REQUIREMENTS FOR ZUIS 
Zoomable User Interfaces are a kind of information 
visualization application. They display graphical 
information on a virtual canvas that is very broad and has 
very high resolution. A portion of this huge canvas is seen 
on the display through a virtual "camera" that can pan and 
zoom over the surface.  

ZUIs have unique requirements beyond those supported by 
standard 2D GUI toolkits.  We list some of the 
requirements for the kinds of ZUIs we want to build below. 
Although these requirements reflect the complex nature of 
ZUIs, many non-zooming application-specific widgets 
have similar requirements: 

1) The ZUI must provide support for custom 
application graphics that may be non-rectangular 
or transparent, as well as traditional interactive 
widgets such as buttons and sliders. 

2) Large numbers of objects must be supported so 
that rendering and interaction performance doesn't 
degrade with complex scenes. 

3) Objects must support arbitrary transforms and 
hierarchical grouping. 

4) View navigations (pans and zooms) should be 
smooth and continuously animated. 

5) Multiple representations of objects must be 
supported so that objects can be rendered 
differently in different contexts, for example, at 
different scales. 

6) Multiple views onto the surface should be 
supported, both as different windows, and within 
the surface to be used as "portals" or "lenses". 

7) Objects must be able to be made "sticky" so they 
stay fixed in one spot on the screen when the view 
changes.  This is similar to a heads-up-display 
(HUD). 

8) It must be possible to write interaction event 
handlers that provide for user manipulation of 
individual elements, and groups of objects. 

The Jazz platform supports all of these requirements. 

RELATED WORK 
The influential InterViews framework [18] supports 
structured graphics and user interface components. Fresco 
[26] was derived from InterViews and unifies structured 
graphics and user interface widgets into a single hierarchy.  
Both Fresco and later versions of InterViews support 
lightweight glyphs and a class hierarchy structure similar to 
Jazz. However, these systems do not support large scene 
graphs well, or handle multiple views onto the scene graph. 

wallacjr
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They also do not support advanced visualization techniques 
such as fisheye views and context sensitive objects. Jazz 
adds new node types to the scene graph to support these 
additional features.  

A number of 2D GUI toolkits provide higher-level support 
for creating custom application widgets, or provide support 
for structured graphics. The Tk Canvas [17] for example 
supports object-oriented 2D graphics, though it has no 
hierarchies or extensibility. Amulet [19] is a toolkit that 
supports widgets and custom graphics, but it has no support 
for arbitrary transformations (such as scaling), semantic 
zooming, and multiple views.  

The GUI toolkit that perhaps comes closest to meeting the 
needs of ZUIs is SubArctic [16].  It is typical of other GUI 
toolkits in that it is oriented towards more traditional 
graphical user interfaces.  While SubArctic is innovative in 
its use of constraints for widget layout and rich input 
model, it has a monolithic design. In addition, it does not 
support multiple cameras or arbitrary 2D transformations 
(including scale) on objects and views.   

None of these 2D GUI toolkits adopt a scene graph 
structure that integrates structured graphics with user 
interface widgets. They are all implemented with a 
monolithic design.  So, while it may have been possible to 
extend an existing toolkit to add support for zooming, it 
would not have been possible to pursue a minilithic design 
that we felt was also an important research goal. 

It is possible to build ZUI applications using existing 3D 
scene graph tools, such as OpenInventor [5].  That may 
work from a structural standpoint.  However, we would 
then be restricted to using a 3D renderer.  That is 
problematic because 3D renderers do not support 2D 
business graphics or standard user interface widgets well.  
 import javax.swing.*; 
import edu.umd.cs.jazz.*; 
import edu.umd.cs.jazz.util.*; 
import edu.umd.cs.jazz.component.*; 
 
public class HelloWorld extends JFrame { 

 
    public HelloWorld() { 
  // Set up basic frame 
 setBounds(100, 100, 400, 400); 
 ZCanvas canvas = new ZCanvas(); 
 getContentPane().add(canvas); 
 setVisible(true); 
 
                // Add some sample text 
       ZText text = new ZText("Hello World!"); 
       ZVisualLeaf leaf = new ZVisualLeaf(text); 
       canvas.getLayer().addChild(leaf); 
    } 

 
    public static void main(String args[]) { 
        HelloWorld app = new HelloWorld(); 
    } 
} 

Figure 2: Complete Jazz “Hello World!” program 
that supports panning and zooming. 

Typical 3D renderers, such as OpenGL, support very 
efficient image and triangle rendering, but do not have 
direct support for high quality scalable fonts, 2D complex 
polygons, line styles, and other standard business graphics.  
We have discussed these issues in depth previously [7]. We 
are also interested in developing scene graph nodes that 
apply to 2D application domains. For this domain, many of 
the nodes found in 3D scene graph systems are not 
appropriate. 

There are several prior implementations of Zoomable User 
Interfaces toolkits. These include the original Pad system 
[20], and more recently Pad++ [6, 7, 8], as well as other 
systems [13, 21][22], and a few commercial ZUIs that are 
not widely accessible [3, 4, 23; Chapter 6].   

All of these previous ZUI systems are implemented in 
terms of a hierarchy of objects, and are therefore 
superficially similar to Jazz. However, like GUI toolkits, 
they all use a monolithic class structure that places a large 
amount of functionality in a single top-level “Node” class. 
For example, in Pad++, the top-level Pad_Object class 
has 235 methods, and supports fading, culling, spatial 
indexing, stickiness, layering, etc. We needed a cleaner and 
more flexible approach. 

THE JAZZ TOOLKIT 
Jazz is a new general-purpose toolkit for creating ZUI 
applications using zooming object-oriented 2D graphics. 
Jazz is built entirely in Java and runs on all platforms that 
support Java 2. 

Jazz uses the Java2D renderer, and is organized to support 
efficient animation, rapid screen updates, and high quality 
stills. While we could have written Jazz using other 
rendering engines, such as OpenGL, we picked Java2D 
because of its clean design and focus on high-quality 2D 
graphics.  As previously mentioned, OpenGL does not 
support business graphics well. In addition, using Java2D 
allows us to support embedded Swing widgets, which 
would be impossible with OpenGL. 

Jazz borrows many of the structural elements common to 
3D scene graph systems, such as Sun's Java3D [1] and 
SGI's OpenInventor [5]. By using a basic hierarchical scene 
graph model with cameras, Jazz is able to directly support a 
variety of common as well as forward-looking interface 
mechanisms.  This includes hierarchical groups of objects 
with affine transforms (translation, scale, rotation and 
shear), layers, zooming, internal cameras (portals), lenses, 
semantic zooming, and multiple representations. 

Figure 2 shows a complete standalone Jazz program that 
displays "Hello World!" where the user can pan and zoom 
the view.  Default navigation event handlers let the user 
pan  

with the left mouse button, and zoom with the right mouse 
button by dragging right or left to zoom in or out, 
respectively.  Note that Jazz automatically updates the 
portion of the screen that has been changed, so no manual 
repaint calls are needed. 

wallacjr
3



CHI Letters vol 2, 2 174

The Jazz design follows standard 3D scene graph practices, 
segregating functionality into separate, non-visual grouping 
nodes. This approach leads to a modular scene graph 
design. Jazz has an extensible visual and interaction policy.  
It comes with a small set of visual objects and a well-
defined mechanism for applications to define their own.  
Similarly, Jazz supports default selection, navigation, and 
other interaction mechanisms, but they are also designed to 
be modifiable by applications.  

Why a  2D Scene graph? 
Most application-specific widgets are built using custom 
data structures to support that particular application, rather 
than using a generic toolkit.  While this approach works, it 
involves re-implementing many common operations from 
application to application. A scene graph architecture, on 
the other hand, provides a general-purpose reusable 
solution for many common operations.  However this 
solution has costs as well.  Let us look at some of the 
tradeoffs that come with the use of a scene graph in 
comparison to a custom application. 

Advantages of a scene graph: 

• Handles Complexity: Scene graphs scale nicely, and 
handle complex scenes well. 

• Abstraction: Scene graphs decouple the components 
of the system, making it easier to improve the renderer, 
switch to different hardware, make platform-specific 
tweaks transparently, etc. 

• Reusability: Scene graphs allow novice programmers 
to use professionally implemented algorithms, and to 
avoid implementing many common features. 

• Interactivity: Scene graphs make it easier to 
implement things like selection and picking. 

• Reuse: Scene graphs make it easy to reuse data in 
multiple places. 

Disadvantages: 

• Footprint: A general solution such as a scene graph 
will likely use more memory than a custom solution. 

• Efficiency: It is typically more efficient to write a 
custom solution than to use a general-purpose scene 
graph. Bradley found that a toolkit-based solution to an 
Othello game ran 19 times slower than a handcrafted 
solution, and consumed 18 times more memory [27].  

• Restrictions: Even with the most open-ended designs, 
a scene graph is likely to place some restrictions on the 
application, which may be avoidable with a custom 
solution. 

ARCHITECTURE 
Jazz is based on three primary concepts: nodes, visual 
components, and cameras. Figure 3 shows the object 
hierarchy of Jazz’s public objects that applications use.  
Figure 4 shows the object structure of a typical application 
with several objects and a camera.   

Nodes and Visual Components 
The Jazz scene graph consists of a hierarchy of nodes that 
represent relationships between objects.  The base node 
type (ZNode) is very simple. There are more complex 
node types, whose features are only paid for when used.  
Hierarchies of nodes can be used to implement “groups” 
and “layers” that are found in most drawing programs, and 
to facilitate moving a collection of objects together. 

 

ZSceneGraphObject 

jazz 

ZNode 

jazz.component 

ZCoordList 

ZImage 

ZPolyline

ZRectangle 

ZVisualComponent 

ZGroup ZLeaf 

 0 .. n 

ZPolygon

ZText ZDrawingSurface 
 1 

ZSwing 

ZCamera 

ZVisualLeaf 

ZAnchorGroup

ZRoot 

ZFadeGroup

ZLayerGroup

ZSelectionGroup ZLayoutGroup

ZTransformGroup

ZConstraintGroup

ZStickyGroup 

ZVisualGroup

 1 .. n 

 2 

 0..n 

ZInvisibleGroup 

Figure 3: The Object hierarchy of Jazz. 

ZEllipse 

ZShape 
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Scene graph nodes have no visual appearance on the 
screen. Rather, there are special objects, called visual 
components, which are attached to certain nodes in a scene 
graph (specifically to visual leaf nodes and visual group 
nodes), and which define geometry and color attributes.  

In other words, nodes establish where something is in the 
scene graph hierarchy, whereas visual components specify 
what something looks like. All nodes have a single parent, 
and follow a strict tree hierarchy. Visual components can 
be reused – the same visual component can appear in 
multiple places in the scene graph, and thus have multiple 
parents.  

There is a clear separation between what is implemented in 
a node and what is handled by a visual component.  Nodes 
contain all object characteristics that are passed on to child 
nodes.  For example, nodes are used to provide affine 
transforms (for translating, rotating, scaling, and shearing 
child nodes), culling sub-trees according to magnification, 
and defining transparency for groups of objects.  Each of 
these characteristics modifies all of that node's descendants.  

Visual components are purely visual. They do not have a 
hierarchical structure (they do not even specify a 
transformation). Each visual component simply specifies 
how to render itself, what its bounds are, and how to pick it 
(i.e. how to detect if the mouse is over the component).   

This split between nodes and visual components clearly 
separates code that is aware of the scene graph hierarchy 
from code that operates independently of any hierarchy. It 
enables hierarchical structuring of scene graph nodes, and 
also reuse of visual components.  It also separates the 
structure from the content.  Visual components are 
interchangeable, making it possible to, say, replace all the 
circles w/ squares in a sub-tree of the scene graph without 
affecting the grouping or position of objects. 

Cameras 
A camera is a visual component that displays a view of a 
Jazz scene graph. It specifies which portion of the scene 
graph is visible using an affine transform. Multiple cameras 

can be setup looking at a single scene graph, each defining 
its own view of the scene graph.  

Drawing Surfaces vs. Internal Cameras 
Cameras are usually mapped to a drawing surface. This 
encapsulates a Java Graphics2D class, which supports 
2D rendering.  The drawing surface is usually associated 
with a Jazz canvas, so that the user can see the surface on 
their display. The Jazz canvas is implemented as a Java 
Swing component, so ZUI interfaces can be embedded in 
any Swing application, wherever a Swing JComponent 
widget is expected.  The Graphics2D of a drawing 
surface can also output to an off-screen buffer, or a printer.  
With this mechanism, a Jazz surface can be used to display, 
print, or to render into a buffer so an application can grab 
the pixels that were rendered.   

In addition to being mapped to drawing surfaces, cameras 
can also be treated just like any other visual component – 
they can be embedded in a Jazz scene graph, so that nested 
views of a zoomable surface can be embedded recursively 
in a scene. Cameras used in this way are called internal 
cameras, and act like nested windows within the world that 
themselves look onto the world, or onto a different world 
(in previous ZUI implementations, we called these 
"portals" [25].)  

Layers 
Each camera contains a list of layer nodes specifying which 
layers in the scene graph it can see.  A camera renders itself 
by first rendering its background, and then rendering all the 
layers in its layer list.  This approach lets an application 
build a single very large scene graph and control which 
portion of the scene graph are visible in each camera. 

Layers can be made temporarily invisible within a specific 
camera by removing it from the camera's layer list.  
Alternatively, a special node type called an “invisible 
group” node can be inserted into the scene graph to make 
all the children of a layer invisible. Changing the order of 
the layer nodes within a camera’s layer list changes the 
drawing order of entire layers.  

  
ZRoot 

ZLayerGroup 

ZGroup 

ZDrawingSurface 

ZPolyline 

ZVisualLeaf 

ZPolyline 

ZVisualLeaf ZVisualLeaf 

ZCamera 

ZVisualLeaf 

ZRectangle 

Figure 4: Run-time object structure in a typical application.  
This scene contains a single camera looking onto a layer 
that contains a rectangle and a group consisting of two 
polylines. 
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Rendering 
Nodes are rendered in a top-to-bottom, left-to-right depth 
first fashion. Consequently, visual components are 
rendered in the order that their associated nodes appear in 
the scene graph. Changing the order of a node within a 
parent node will change the rendering order of the 
associated visual component. 

Culling 
All scene graph objects include a method to compute their 
bounding rectangle.  Jazz uses this to decide which objects 
are visible, and thus avoid rendering or picking objects that 
are not visible in a given view.  Bounds are cached at each 
node in the current relative coordinate system.  Objects that 
regularly change their dimensions can specify that their 
bounds are volatile. This tells Jazz not to cache their 
bounds, and instead to query the object directly every time 
the bounds are needed to make a visibility decision. 

Events 
Jazz supports interaction through Java’s standard event 
listener model.  An event listener is an object that responds 
to events.  They may be attached to any node in the Jazz 
scene graph.  There are two categories of events – input 
events and object events.  Input events result from user 
interaction with a graphical object, such as a mouse press.  
Object events result from a modification to the scene graph, 
such as a transformation change, or a node insertion.  All 
events can be handled by attaching listeners to scene graph 
nodes.  There can be multiple listeners per node. Unlike the 
standard Swing and AWT listener model, in Jazz by default 
each input event is passed up the tree to the listeners on 
ancestor nodes.  However, if a listener consumes the event, 
the event is not passed on any further.  With this 
mechanism, custom event listeners may be written for 
specific nodes that correspond to graphical items – or a 
listener may be attached higher in the scene graph tree, 
which then provides interaction support for the entire 
subtree below the listener.  Event listeners can be written in 
either a specific or very general manner depending on the 
application's needs.   

Jazz dispatches all mouse events to the node (and 
potentially its ancestors) returned by a pick operation at the 
location of the original mouse event on the Jazz drawing 
surface. Before dispatching the event, Jazz modifies the 
event records to reflect the local coordinates of the picked 
component. Visual component event handlers can therefore 
work in their local coordinate system. 

Jazz comes with event handlers for several basic tasks, 
such as navigation, selection, and hyperlinks.  Applications 
are free to use these or define their own. 

COMPOSING FUNCTIONALITY USING NODE TYPES 
A basic design goal of Jazz is to maintain a decoupled 
design so that different features do not depend on each 
other and so that applications only pay for features when 
they use them.  This led us to keep the core ZNode very 
simple, and to add extra features by introducing new node 
types which are inserted into the scene graph as needed.   

For instance, since not all nodes will be transformed, the 
core node type does not contain a transform.  Instead, a 
transform node is created when needed and inserted above 
any node that should be transformed.   

Developers are encouraged to achieve complex 
functionality by composing simple node types in a scene 
graph rather than by using subclassing and inheritance.   

To validate the practicality of this idea for ZUIs, we have 
developed a number of Jazz node types, each implementing 
a specific functionality suitable for ZUI applications, and 
each remaining small and manageable.  In this section we 
discuss some of the node types we have created. 

Jazz includes nodes to support layers, selections, 
transparency, hyperlinks, fading, spatial indexing, layout, 
and constraints. In this section we discuss some of these 
node types. 

Selection and Hyperlink Nodes 
Some node types associate extra characteristics with a 
portion of the scene graph. These extra nodes act as 
"decorators" following a standard object oriented design 
pattern [15].  They wrap the core functions of the nodes 
below them, adding extra functionality.  For example, we 
have written a Jazz selection decorator node that draws its 
children, and then draws a selection box with resize 
handles. 

Similarly, Jazz defines a link node, which is used to create 
spatial hyperlinks.  The link node associates the destination 
of a spatial hyperlink with a node, but does so without 
modifying the node and without the node’s knowledge. 
When the user moves the mouse over a link node, it 
presents an arrow visual component to show what the link 
refers to. Clicking on the link navigates the camera to the 
linked object. 

Position and Layout Nodes 
The position and scale of objects is specified in Jazz by 
inserting transformation nodes into the hierarchy. Active 
layout managers can also be utilized by inserting a layout 
node into the hierarchy. We have developed a layout node 
that uses a layout manager analogous to the Java AWT and 
Swing layout managers. Layout managers can be inserted 
at different levels of the scene graph, yielding hierarchical 
layouts.  Applications may define new layout managers, or 
use one of the built-in layouts.  Currently, Jazz has two 
layout managers: a hierarchical tree layout manager, which 
will layout any subtree of the scene graph in a standard tree 
structure, and a path layout manager, which will position a 
set of nodes along any path. The hierarchical tree layout 
manager is interesting in that it shows lines indicating the 
linkages between nodes in the tree using a special visual 
component. 

Constraint Nodes 
We have developed nodes that use dynamic constraints to 
position their children. Currently we use these constraint 
nodes to implement “sticky objects” – portions of the scene 
graph that are associated with a particular camera and that 

wallacjr
6



CHI Letters vol 2, 2 177

do not move when the camera viewpoint is changed.  
Sticky nodes subclass a constraint node that contains a 
transform. They modify the transform by setting it to the 
inverse of a specified camera’s view transform whenever 
the camera’s view changes. The subtree rooted at the sticky 
constraint node then does not move as the viewpoint 
changes.  It is as if they are stuck to the camera’s lens.  

Culling Nodes 
A basic characteristic of zoomable applications is that there 
can be a large number of objects in a given scene graph, 
many of which are not visible in a given view of the graph. 
For example, in a zoomed-in view, only very small objects 
are visible, whereas in a zoomed-out view, only large 
objects need be shown.  Thus, it is important to efficiently 
traverse the scene graph, culling invisible objects.  
Sometimes simple bounds-based culling is not sufficient. 
We have developed two additional mechanisms to support 
culling.  First, "fade" groups can be inserted in the scene 
graph to cull a subtree when it appears larger or smaller 
than a specified magnification in a view (fade groups use 
alpha blending to smooth this transition - hence the name).  
Second, a "spatial index" node can be inserted in the scene 
graph to provide fast access to the visible children of that 
node.  The spatial index node implements an RTree index 
[24] which is effective when there are many nodes, but 
only a small percentage of them is visible at a given time.  
This is quite common in ZUIs since this typically occurs 
whenever the view is zoomed in. 

CUSTOM VISUAL COMPONENTS 
To define new visual components, applications extend the 
visual component class and define two functions.  The new 
object defines how to paint itself and how big it is. In 
addition, visual components may define picking methods if 
the object is not rectangular, so Jazz knows when the 
pointer is over the object.   

Legacy Java Code 
One of our motivations for splitting components and scene 
graph nodes in two was to make it easy to import non-
zooming components and legacy applications into a 
zooming context. In Jazz, visual components can be easily 
defined to wrap legacy Java code that is written without 
awareness of Jazz.  Those components can then be zoomed 
and interacted with by placing them in a scene graph. For 
example, it is possible to take some pre-existing code that 
draws a scatter plot and make it available as a Jazz visual 
component on a zooming surface.   

This technique has been used to wrap existing code in two 
large systems.  The first is a graphical simulation system 
from a research group at Los Alamos National Labs.  We 
defined a new visual component that wrapped their core 
visual component, and were able to place their entire 
visualization inside of Jazz, complete with zooming and 
multiple views and interaction in about half of a day.  The 
second was the LEIF system developed by DTAI [2].  This 
is a large information framework system with a major 
visualization component.  With a similar technique, they 

were able to wrap their core object type with a Jazz visual 
component, and get their entire application to appear inside 
of Jazz. 

Swing Visual Components 
Any lightweight Java Swing component can be embedded 
into a Jazz scene graph by placing it in a Jazz ZSwing 
visual component in the scene graph. The Swing 
component can then be panned and zoomed like other Jazz 
components. This means that fully functioning existing 
Java Swing code with complete GUIs can be embedded 
into a zooming surface, and mixed and matched with 
custom graphics within Jazz.  For example, a Swing 
interface with a table and buttons could be placed on a 
zooming surface and overlaid with an application-specific 
visualization.  The Swing components can be manipulated 
in exactly the same way as other Jazz components, 
including applying rotation, scale, transparency, and 
multiple views. The embedded Swing integration occurs 
transparently to the Swing widget and to other nodes in the 
scene graph. 

To implement embedded Swing widgets inside of Jazz, the 
widgets’ input and output had to be remapped to 
accommodate their transformed rendering.  Mouse input in 
Swing normally takes the pointer’s screen location directly 
to the Swing component’s local coordinate system.  This 
mapping is not as straightforward since embedded Swing 
widgets may be arbitrarily transformed. So the ZSwing 
visual component registers listeners for mouse events, and 
forwards any events it receives to the underlying Swing 
component in its coordinate system. 

Similarly, the ZSwing visual component must also alter 
repaint requests made by Swing components embedded in 
Jazz.  These Swing repaint requests assume rendering in a 
traditional GUI rather than one arbitrarily transformed.  
The ZSwing visual component must reroute these repaints 
through the Jazz scene graph, including multiple views, to 
properly transform the Java Graphics2D object to be used 
by the Swing component for rendering.  Fortunately, all of 
this remapping was done generically, and the Jazz code has 
no knowledge of specific Swing widgets. 

CREATING APPLICATION SPECIFIC WIDGETS 
To test Jazz, we developed a number of prototypes of 
application-specific widgets. These widgets explore various 
aspects of ZUIs and general graphical application design. 
In this section, we report briefly on these widgets. 

Basic ZUI Application 
To understand the requirements of ZUIs as well as the 
structure of Jazz, we created a simple zoomable application 
in Jazz.  We built a graph editor (available as an applet on 
the Jazz website) that lets users draw a graph with many 
nodes that are connected by links.  The links follow nodes 
that the user moves.  The user can draw very large graphs 
and the view may be zoomed in or out on demand.  Nodes 
can be grouped.  When zoomed out, these node groups fade 
out and are replaced with a group node that represents an 

wallacjr
7



CHI Letters vol 2, 2 178

abstraction of the elements of the group.  Finally, to 
support the user in understanding global context as well as 
detail, multiple views can be brought up simultaneously 
and the zoomed out views will show where the zoomed in 
views are. 

It is difficult to build this application using existing GUI 
toolkits.  GUI toolkits don’t directly support zooming, 
multiple views, and multiple levels of information, so the 
application would have to manage all of these details.  
Building this application in Jazz was straightforward. 

Since zooming, multiple levels of representation, and 
multiple views are all directly supported by Jazz, writing 
the graph drawing application was just a matter of adding 
appropriate nodes to the scene graph for each element of 
application.  In addition, Jazz’s support for interaction 
through event listeners makes it easy to add nodes and edit 
the graph.  Object change events are generated when an 
object moves, so an event listener was attached to the nodes 
in order to update the connecting arrows so they always 
follow the nodes.  Finally, Jazz takes care of screen 
updates, hierarchical transforms, etc. which simplifies 
application programming considerably. 

Fisheye Views 
The scene graph model in Jazz makes it easy to support 
advanced graphical features.  For instance, while Jazz 
directly supports geometric zooming of entire scenes, it is 
also possible to create "fisheye" visualizations where each 
object is scaled according to some degree of interest 
function [14].   

We implemented a simple fisheye view in Jazz by putting a 
special fisheye decorator node above every object that we 
wanted the fisheye effect applied to.  The fisheye node is 
really just a special transform node that dynamically 
computes its scale according to a function.  Admittedly, 
this is a simplified fisheye view, as entire objects are scaled 
whole rather than being distorted. 

Context Sensitive Objects 
By default, Jazz objects support a single presentation style. 
It is also desirable to be able to support multiple 
representations of a single data model.  That is, to support 
different visual displays of objects in different contexts. 

Applications can easily use Jazz to present different visual 
representations of data in different circumstances. Many 
different kinds of context can be used to influence how and 
what gets drawn, so we sometimes call this technique 
context-sensitive rendering. While an application can use 
any context whatsoever to control an object’s rendering 
(such as author, or time), two especially common contexts 
are magnification (the size the object is rendered at) and 
camera (the camera the object is being rendered within). 
We sometimes use the more specific term semantic 
zooming to refer to objects that change the way they appear 
based on the current magnification. When an object appears 
differently when viewed with different cameras, we 
sometimes use the term lens or filter [6, 25].  

Jazz’s standard visual components render themselves the 
same way every time, except during interactions, when 
they may render themselves at lower resolution for 
efficiency. Applications can define new visual components 
and nodes whose paint methods are context sensitive. 

Standard software engineering approaches call for 
decoupled representations.  Each visual representation 
should exist independently of the others. This allows the 
application builder to design new representations, and 
modify old ones without affecting the other representations. 
A clean decoupled design would support different classes 
for each visual representation of the data. One design that 
accomplishes this is to make a special visual component 
that acts as a Proxy [15] for another visual component, and 
can delegate between them. A more elaborate delegation 
scheme is described by Fox [12]. 

Such a delegator is fairly straightforward to build. It 
maintains a list of ancillary visual components and exactly 
one of them is active at a time. It then defines its paint, 
and pick methods to call the active visual component.  

We implemented a simple delegator as a proof-of-concept.  
Our sample delegator supports semantic zooming by 
selecting a specific visual component to render based on 
the current magnification level.  This approach has the 
property of having decoupled visual representations while 
keeping those representations together on the screen.  
Because they are all controlled by a single node, moving 
that node (by changing its transformation) moves each 
zoom level’s representation together. Figure 5 shows the 
basic structure of the scene graph for our delegator that 
supports semantic zooming. 

NODE MANAGEMENT 
A drawback of the “minilithic” approach adopted by Jazz is 
that it places a burden on the application programmer since 
they must manage a scene graph containing many nodes 
and node types.  Adding a new element to a scene can take 
several steps. 

In practice there is typically a primary node that the 
application cares about (usually the visual leaf node) and 
then there are several decorator nodes above it. We have 
implemented special support for managing these kinds of 
scene graph structures, using the notion of scene graph 
editor objects.  

An editor instance can be created for any node on the scene 
graph. It has methods for obtaining parents of the node that 

 
Delegator 

Rep 1 Rep 2 Rep 3 

Figure 5: One way to implement semantic zooming in 
Jazz.  The Delegator chooses which representation 
to use to paint itself depending on the current 
magnification. 
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are of a specific type. It uses lazy evaluation to create those 
parent nodes as they are required. Jazz maintains a special 
bit in each node specifying if it is created by an editor.  
With this structure, if an application wants to obtain a 
transform node for a given node in the scene graph, it can 
simply call: 

node.editor().getTransformGroup().   

If the node does not have a transform node associated with 
it, a new transform node is created and inserted above the 
node. Otherwise the existing transform node is returned. 
The editor() method actually calls a factory [10] to 
create the editor, so applications can define custom 
mechanisms for editing nodes.  

CURRENT STATUS 
Everything described in this paper is currently implemented 
in Java 2 and is publicly available as open source software.  
Jazz is being actively used by a number of research groups, 
has been used in university courses in and outside of the 
University of Maryland, and is being used within two 
commercial products currently being developed. 

The Jazz distribution comes with a sample application 
called HiNote that demonstrates some of the basic features.  
In addition, we are currently building two other 
applications.  The first is a new version of KidPad [9, 11] 
that provides collaborative storytelling tools for children, 
available at http://www.cs.umd.edu/hcil/kidpad.  The 
second is an authoring tool for creating presentations. The 
authoring tool builds on our experience making zoomable 
presentations over the past several years.  The authoring 
tool works as a plug-in for Microsoft PowerPoint allowing 
any existing presentation to be brought into a zoomable 
space.  This tool is not yet publicly available. 

CONCLUSION 
This paper describes the architecture of Jazz, a new Java 
toolkit that supports the development of extensible 2D 
object-oriented graphics with zooming and multiple 
representations.  It is a descendent from previous Zoomable 
User Interfaces that we have built in the past.   

While Jazz does not introduce many substantially new 
individual ideas, it is novel in bringing together a variety of 
techniques from different domains.  Jazz takes scene graphs 
from 3D graphics, screen and interaction techniques from 
2D widgets, functionality from previous ZUI systems, and 
puts these elements  together with clean decoupled object 
oriented design. Using Jazz, developers can write serious 
zoomable applications and advanced visualizations with a 
clarity and efficiency that has not been possible before. 

The biggest contribution of Jazz is the creation of a 
graphics toolkit built using a “minilithic” design.  By 
encouraging composition over inheritance, the Jazz feature-
set is highly decoupled.  This makes the code easier to 
maintain and extend compared with monolithic approaches.  
We and others have used Jazz to build a variety of 
applications.  This proof by example demonstrates that the 

approach has potential.  There are, however, trade-offs with 
any design, and the minilithic approach also has costs. 

Our experience with Jazz so far shows us that the biggest 
concerns with the Jazz design is ease-of-use and efficiency.  
The downside of a minilithic approach is that the 
application developer must manage many more objects 
than with a more traditional design.  While you only pay 
for the features you use, you need a new node instance for 
each feature.  While we have attempted to minimize this 
burden through the use of “editors”, the developer still has 
to be aware of many node types.  

Another basic issue is efficiency of a scenegraph-based 
solution compared to an entirely custom solution.  An 
alternative to Jazz for some visualizations would be to 
build a custom data structure representing the model, and 
then to build a render method that simply walks through the 
model, rendering the entire scene.  This approach is simple 
and very efficient.  We believe that for simple applications, 
that kind of custom implementation may be best.  The 
advantages of a scenegraph-based approach don’t appear 
until the application requires features such as selection, 
layers, fading, or spatial indexing.  Once a number of these 
features are required, the custom approach becomes very 
tedious, and difficult to maintain.  So, while we do not yet 
have any quantitative data to inform a designer, it appears 
that there is a threshold of complexity above which Jazz 
provides more benefit than cost. 

While we have not yet performed a rigorous quantitative 
performance analysis, we and others have used Jazz for a 
number of applications.  We have consistently found that 
its performance is good.  The primary bottleneck appears to 
be rendering large numbers of objects, and not the 
overhead incurred by traversing and maintaining the 
scenegraph. 

We look forward to continuing the development of Jazz, 
and increasing our understanding of the trade-offs of the 
minilithic scenegraph design that we have chosen.  As Jazz 
is used for more projects, we will gain enough experience 
to carefully analyze the construction of systems using Jazz, 
and compare them to alternative approaches. 
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